Análisis de datos

 

Análisis de datos


El análisis de datos es el proceso de exploración, transformación y examinación de datos para identificar tendencias y patrones que revelen insights importantes y aumenten la eficiencia para respaldar la toma de decisiones.

El proceso de análisis de datos

El proceso de análisis de datos se basa en varios pasos y fases. Es posible que las conclusiones de fases posteriores requieran volver a trabajar en una fase anterior, lo que implica un proceso más cíclico que lineal. Lo más importante es que el éxito de los procesos de análisis de datos depende de la capacidad de repetición y automatización de cada uno de estos pasos.

El proceso de análisis se divide de mejor manera en los siguientes pasos y fases:


Entrada de datos: determina los requisitos y recopila los datos. Esto implica un poco de trabajo de investigación, como hablar con las partes interesadas, averiguar quiénes son los responsables de los datos y obtener acceso a estos últimos.

data input

Preparación de datos: se trata de la estrategia y la táctica de preparación de los datos para su objetivo principal de producir insights de análisis. Esto incluye la limpieza y consolidación de los datos sin procesar, en datos bien estructurados y listos para el análisis. También incluye la comprobación de los resultados en cada parte del proceso de preparación para asegurarse de que el análisis esté generando los resultados deseados.

data preparation

Exploración de datos: la exploración de datos, o análisis exploratorio de datos, es el proceso de estudio e investigación de un gran conjunto de datos mediante el muestreo, el análisis estadístico, la identificación de patrones y la elaboración de perfiles visuales, entre otros. Los métodos no son necesariamente científicos o concluyentes, sino que sirven para comprender mejor la transformación de los datos.

data exploration

Enriquecimiento de datos: se enriquecen y aumentan los datos con entradas y conjuntos de datos adicionales para mejorar el análisis. Este paso en el proceso de análisis de datos es fundamental para revelar nuevos insights mediante la observación de datos desde una nueva perspectiva.

data enrichment

Data science: se trata de aplicar métodos más avanzados de extracción de datos para obtener significados e insights más profundos y difíciles de extraer, que son en gran medida inalcanzables mediante modalidades más rudimentarias de procesamiento de datos. Esto incluye algoritmos, entrenamiento de modelos, aprendizaje automático (ML) e inteligencia artificial (IA), por mencionar algunos.

data science

Business intelligence: se pueden obtener resultados de negocios a través de la combinación de datos, software, infraestructura, procesos comerciales e intuición humana de una organización. Los resultados ofrecen insights accionables a través de informes, paneles de control y visualizaciones para ayudar a tomar decisiones comerciales.

business intelligence

Generador de informes: los resultados del análisis de datos deben compartirse de una manera eficaz que preserve los conocimientos adquiridos. El Generador de Informes organiza ese conocimiento y sus resultados en un formato fácil de comprender.

reporting

Optimización: dado que las variables cambian con el tiempo, es necesario optimizar y mejorar los modelos para que sigan cumpliendo su propósito inicial o para que evolucionen a partir de este propósito basándose en nuevas entradas o características cambiantes.

Publicar un comentario

Post a Comment (0)

Artículo Anterior Artículo Siguiente